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Overview

* (5 min) Research Problem
* (10 min) Approach
* (5 min) Evaluation and Conclusion



Duplicated Tasks —
Events Having Imprecise Labels
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Input:
Imprecise log
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Output:

Refined log
Model
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So that

1.
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3.

all traces & events preserved (no filtering)

model is more precise (than without refining)

we can explore different refinement of labels interactively
(because we don’t know correct label refinement from
given log)
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Refining Event Labels
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Refining Event Labels
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a) Manual by user input

b) Automated detection
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Approach

Imprecise label Horizontal clusters Vertical clusters
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Refined log

Imprecise log

E'

i

1. Detect

imprecise
labels horizontally

—— —————— -

4. Refine
vertically

similar events

Mappings



Mapping Between Events
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Quantify Similarity of Mapped Events

... based on “structural context of events”
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Quantify Similarity of Mapped Events

... based on “structural context of events”
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Quantify Similarity of Mapped Events

... based on “structural context of events”
(1) Differences in neighbors
(2) Differences in structure
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Quantify Similarity of Mapped Events

... based on “structural context of events”

(1) Differences in neighbors
(2) Differences in structure
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Cost

Quantify Similarity of Mapped Events

... based on “structural context of events”
(1) Differences in neighbors

(2) Differences in structure
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Quantify Similarity of Mapped Events

based on “structural context of events

(1) Differences in neighbors
(2) Differences in structure
(3) #Dissimilar events
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There is an algorithm to compute an optimal mapping
Xixi Lu, Dirk Fahland, Frank J.H.M. van den Biggelaar, and Wil M.P. van der Aalst. Detecting Deviating Behavior without Models

In BPM Workshops 2015, volume 256, pp.126-139, Springer International Publishing, 2015

17



Approach

Imprecise label Horizontal clusters Vertical clusters

candidates of events of events
Refined log

Imprecise log
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3. Refine horizontally using cost
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3. Refine horizontally using cost
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Imprecise label candidates

a) Normalize costs w.r.t.
maximal cost seen in the log
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Trace O

Trace 1

Trace 2

Trace 3

3. Refine horizontally using cost
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Imprecise label candidates

a) Normalize costs w.r.t.
maximal cost seen in the log

b) Set variant threshold,
say, 0.8

c) Remove edges
if cost > variant threshold
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Trace 1

Trace 2

Trace 3

3. Refine horizontally using cost
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a) Normalize costs w.r.t.
maximal cost seen in the log

b) Set variant threshold
say, 0.8

c) Remove edges
if cost > variant threshold
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4. Refine vertically using frequency
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1) Set unfolding threshold,
say, 60%
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s this A1 a 2"d jteration of a loop?
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It is clear b and c stay as-is. The question now is should “A” be refined. In essence, Mappings have formed different groups of “A”s. We now have to decide are they different As, or are they different iterations of the same A. 

In some sense, it is not just for loop, but also for Xor, and other distinct way of grouping…


In other words, do we want to see a loop or distinct transitions in the model. Is it a repeatitive behavior, and the repetition is below a certain threshold, then we they is it a loop. Otherwise, we assume it is two distinct tasks. 


4. Refine vertically using frequency
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1) Set unfolding threshold,
say, 40%
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1 \ if freq > unfolding threshold

Or is this a different task?
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Approach

Iterative

Imprecise log
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Implemented in ProM

* There will be a demo in the demo track.

Cluster
Imprecise Label Candidates :

Send Appeal to Prefecture

Send Fine

Receive Result Appeal from Prefecture
Add penalty

Send for Credit Collection
Appeal to Judge

Insert Date Appeal to Prefecture
Create Fine

Notify Result Appeal to Offender
Insert Fine Notification

Payment

Set Max. Cost of Edges: 40

Set Unfolding Threshold: 0

Export model

Export log

Set visualization type:

Detect
imprecise labels

Refine horizontally

Refine vertically
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Evaluation

e 3 experiments, each 600 models, k transitions w/ same label
E1) Default parameters, k=4
E2) Adaptive parameters, k=4
E3) linloop, k=2
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Experiment Result - Example

System precision improved by 0.68
System recall is 1

Precision w.r.t. log improved by 0.55

28


Presenter
Presentation Notes
file:///D:/workspace/TraceMatching/dupResult/resultDupTaskmrt05-1559/Result_modelJ.html


The refined models (c)(e) shows that the duplicated tasks were rediscovered �in their respective positions, but unable to identify the concurrency between�two consecutive duplicated tasks.



Experiment Result -

F1-score of &% and &g w.rt. &2

E1) Default E2) Adaptive E3) 1in loop
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Improved 35% ~ 46% Models Improved 89% Models Improved 60% Models
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Experiment Results and Limitations

{a) Number of logs {b) Frequency of improvements in (<) shift in System F1-Score (a) Number of logs refined (b) Freq. of improvemert-- (c) Shift in System Fl-score
refined (IMD}) Log_Precision (IMD) {IMD) (0D & Adaptive & In Loop) Log predsion (0™ 7 (OD & Adaptive & In Loop)
200 300 200 #M_lab = #M 200 ann . 200
= TRUE O FALSE — = O S ° #M_lab

200 L =M

10 139 100 o | H‘Ed' I harts a“ 100

C |'n 65

wo 713t T . \ S n | 53'

) .

I'ilzli 5': I 3I1| 2:" 1_4 l_zgllTs re e)(amp € \ts On\\ne' D7 200 00 I? I I
15 20 10 15 20 ) . mo esu (0, (04, (0.2, (03, (0.4, (05, (06, {0.7, (0.8, (0.9, [00, (05, {06, {07, (08, (09, [1.0]

1=0 L = 150 mm 132 wo BT T d d.\SCUSS\ n 150 | w#M _re 122

rn i
ILP IM See Paper . \ Oad r 0.1] 0.2] 0.3] 04] 05] 0.6] 0.7] 0.8] 0.9] 1.0] 05] 06] 07] 08] 03] 10
Log_precision improved by 0.67, ,._-’__“. = _" -
(a) Number of logs refined (c) Shift in System Fl-score Sys_precision improved by 0.79, ,U ) — o
(0D & Adaptive] —apave) (0D & Adaptive) sys_recall = 1 5 of |— o,

200

13 26 | lap 300 200
150 250 151 11? % ':’
IM | 150 I#M e ERCT
200 Tk
100 104 T
FALSE | 150 a2 100 -
50 mTRUE || 100 57
50 35 23 =0 15
o 0 0 0 0 0 ‘ 1 |
0 15 20

The original model (a) has the second duplicate task in a loop.
(o, (01, (0.2, (03, (04, (05, (06, (0.7, (08, (03, oo, (o5, 10.5, (07, (08, {03, [1.0] Without refinement a large flower loop is discovered (b). Using
" ol ozl 03] o4l 05 o6l 071 04l 09l 10l ol ol o7l ol osl 1o our approach refines labels so that model (a) is rediscovered.
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Real-life Example : Hospital Data
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Conclusion and Future Work

* Improved logs (and process discovery) by refining labels for up to 87%
* Interactive and explorative

e Future work
e Different ways to compute similar events using context of events
e Log preprocessing framework

* Integrated in “Log to Model Explorer”
e Supporting clustering, filtering and label refining

e Come to the Demo!



Questions?
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