

Process Model Discovery: A Method Based on Transition System Decomposition

Anna A. Kalenkova¹, Irina A. Lomazova¹ and Wil M.P.van der $Aalst^{2,1}$

¹Higher School of Economics — PAIS Lab, ²Eindhoven University of Technology

35th International Conference on Application and Theory of Petri Nets and Concurrency. Tunis, Tunisia

Outline

- Two words about Process mining
- Motivating example
- Basic definitions
- Discovery algorithm based on transition system decomposition
- Structural and behavioral properties preserved by decomposed discovery
- Region based algorithms
- Conclusion

Process mining

Quality dimensions. Simplicity

Motivating example. Log and transition system

L = { (start_booking, book_flight, get_insurance, send_email, choose_payment_type, pay_by_card, complite booking),

 $\langle start_booking, book_flight, cancel, send_email \rangle,$

Motivating example. Discovered models

Petri Nets 2014

Motivating example. Decomposition approach

Petri Nets 2014

Basic definitions

Definition (Event log). Let *E* be a set of events. A *trace* σ (over *E*) is a sequence of events, i.e., $\sigma \in E^*$. An *event log L* is a multiset of traces.

Definition (Transition system). A *transition system* is a tuple $TS = (S, E, B, s_{init}, S_{fin})$, where

- S is a set of states;
- E is a set of events;
- $B \subseteq S \times E \times S$ is a transition relation;
- $s_{init} \in S$ is an initial state;
- and $S_{fin} \subseteq S$ a set of final states.

Basic definitions

We write $s \stackrel{e}{\rightarrow} s'$, when $(s, e, s') \in B$.

A state s is reachable from a state s' iff there is a possibly empty sequence of transitions leading from s to s' (denoted by $s \stackrel{*}{\rightarrow} s'$).

A transition system must satisfy the following basic axioms: every state is reachable from the initial state: $\forall s \in S : s_{init} \stackrel{*}{\rightarrow} s$, for every state there is a final state, which is reachable from it: $\forall s \in S \exists s_{fin} \in S_{fin} : s \stackrel{*}{\rightarrow} s_{fin}$.

Definition (Language accepted by transition system).

A trace $\sigma = \langle e_1, \ldots, e_n \rangle$ is called *feasible* in a transition system TS iff $s_{init} \stackrel{*}{\to} s_n$, and $s_n \in S_{fin}$, i.e. a *feasible* trace leads from the initial state to some final state. A *language accepted by* TS is defined as the set of all traces feasible in TS, and is denoted by L(TS).

Petri Nets 2014

Basic definitions

Definition (Reachability graph)

A reachability graph for a marked Petri net $(N, m_0), N = (P, T, F, \lambda)$ labeled with events from E is a transition system $TS = (S, E, B, s_{init}, S_{fin})$, such that

- the set of states S defined as a set of all markings reachable in ${\cal N}$ from the marking $m_0,$
- transition relation B defined by $(m,e,m')\in B$ iff $m\xrightarrow{t}m',$ where $e=\lambda(t),$
- the initial state in TS is the initial marking m_0 ,
- if some reachable markings in (N, m_0) are distinguished as final markings, they are defined as final elements in TS.

Decomposition approach

Definition (Decomposed transition system).

A set of states S can be partitioned over S_{reg} and S_{spec} and then the tuple $TS_{dec} =$ (TS, S_{reg}, S_{spec}) is called a *decomposed transition system* if the following additional conditions hold: $s_{in} \in$ S_{reg} and $S_{fin} \subseteq S_{reg}$.

Region algorithm. Properties

- 1. There is a homomorphism ω from a transition system TS to the reachability graph RG of a target Petri net N, i.e. for every $s \in S$ there is a corresponding node $\omega(s)$ in RG (every state in TS has a corresponding N marking), such that $\omega(s_{in}) = m_0$ and for every transition $(s_1 \xrightarrow{e} s_2) \in B$ there is an arc $(\omega(s_1), \omega(s_2))$ in RG labeled with e.
- 2. The target Petri net is safe.

Decomposition algoritm. Step 1

Step 1. For the decomposed transition system:

 $TS_{dec} =$ $((S, E, B, s_{in}, S_{fin}), S_{reg}, S_{spec})$ construct two transition systems:

 $TS_{reg} = (S_{reg}, E_{reg} \cup E', B_{reg} \cup B', s_{in}, S_{fin})$

and

$$TS_{spec} = \\ (S_{spec} \cup \{s_i\} \cup \{s_o\}, E_{spec} \cup E'' \cup \\ \{e_{start}, e_{end}\}, B_{spec} \cup B'' \cup \\ B_{start} \cup B_{end}, s_i, \{s_o\})$$

Petri Nets 2014

Decomposition algoritm. Steps 2, 3 and 4

Step 2. Apply a region-based algorithm to retrieve a regular (N_{reg}) and a special (N_{spec}) process flow from TS_{reg} and TS_{spec} respectively.

Step 3. Restore the connections between N_{reg} and N_{spec} to create a unified Petri net $N: \forall (s \xrightarrow{e_{esc}} s') \in B_{esc}, s \in S_{reg}, s' \in S_{spec}$ add a novel Petri net transition labeled with e_{esc} . Similarly, transitions from B_{ret} are restored.

Step 4. Delete the following nodes along with their incident arcs: transitions with labels from E' and E'', all the transitions labeled with e_{start} along with the places from their presets, and all the transitions labeled with e_{end} along with the places from their postsets.

Structural properties

Lemma (Connectivity properties)

If there is a *directed path* between a pair of nodes (i.e., places or transitions) within subprocess model N_{reg} (N_{spec}) and these nodes were not deleted during the construction of the unified Petri net model $N = (P, T, F, \lambda)$, then there is a directed path between them within N.

$\begin{array}{c} \begin{array}{c} e_{esc} & s_{1} \\ e' \\ e_{ret} \\ e_{ret} \\ s_{2} \\ m_{2} \end{array} \end{array} \begin{array}{c} \begin{array}{c} e' \\ e_{ret} \\ m_{2} \\ m_{2} \end{array} \end{array}$

Theorem (WF-nets)

Assume that subprocess models N_{reg} and N_{spec} are WF-nets. Then the unified process model N is a WF-net.

Behavioural properties

Theorem (Bisimulation)

Suppose there are bisimulation relations between transition systems TS_{reg} and TS_{spec} , corresponding to subprocess models N_{reg} and N_{spec} , and reachability graphs RG_{reg} , RG_{spec} of these subprocess models. Suppose also that there are no states in TS_{reg} and TS_{spec} , which correspond to markings dominating one another. Then there is a bisimulation relation between a decomposed transition system and the reachability graph RG of the unified process model N.

Theorem (Language inclusion)

Let $TS_{dec} = (TS, S_{reg}, S_{spec})$ be a decomposed transition system. Assume that N_{reg} and N_{spec} are subprocess models constructed from transition systems TS_{reg} and TS_{spec} with corresponding reachability graphs RG_{reg} and RG_{spec} . Let Petri net N be the unified process model with a reachability graph RG. If $L(TS_{reg}) \subseteq L(RG_{reg})$ and $L(TS_{spec}) \subseteq L(RG_{spec})$, then there is a language inclusion: $L(TS) \subseteq L(RG)$.

A language based region algorithm. Properties

A (language-based) region is defined as a $(2\,|T|+1)$ -tuple of $\{0,1\}$, representing an initial marking and a number of tokens each transition consumes and produces in a place.

- 1. There is a bijection between Petri net transitions T and events in the initial transition system E, such that every transition is labeled with a corresponding event.
- 2. There is a homomorphism ω from a transition system TS to the reachability graph RG of a target Petri net N.
- 3. The target Petri net is safe.

State-based region algorithm

- Let $TS = (S, E, T, s_{in}, S_{fin})$ and $S' \subseteq S$. S' is a region iff $\forall e \in E$ one of the following conditions hods:
- all the transitions $s_1 \stackrel{e}{\rightarrow} s_2$ enter S', i.e. $s_1 \notin S'$ and $s_2 \in S'$,
- all the transitions $s_1 \xrightarrow{e} s_2$ exit S', i.e. $s_1 \in S'$ and $s_2 \notin S'$,
- all the transitions $s_1 \xrightarrow{e} s_2$ do not cross S', i.e. $s_1, s_2 \in S'$ or $s_1, s_2 \notin S'$.

State-based region algorithm. Properties

- 1. Every Petri net transition $t \in T$ corresponds to an event in the initial transition system $e \in E$ (the transition t is labeled with e), the opposite is not true (events of the initial transition system might be split).
- 2. There is a bisimulation between a transition system and a reachability graph of the target Petri net, this implies that every state in TS corresponds to a Petri net marking. Bisimulation relation defined by the state-based region algorithm specifies the only one state in a reachability graph for each state in a transition system, in such a case bisimulation implies homomorphism.
- 3. The target Petri net is safe, i.e. no more than one token can appear in a place.

Conclusions. Future plans

- 1. The method presented can be applied to construct a hierarchy of subprocesses.
- 2. The decomposition method gives a starting point for more advanced mining techniques.
- 3. Some improvements (including reset arcs and parallel executions) can be proposed.
- 4. A method for automatization of a decomposition should be proposed.
- 5. Methods for transition system repair could be developed.
- 6. The method can applied for the construction subprocesses of a hight-level process model (e.g. BPMN process model).

Thank you!