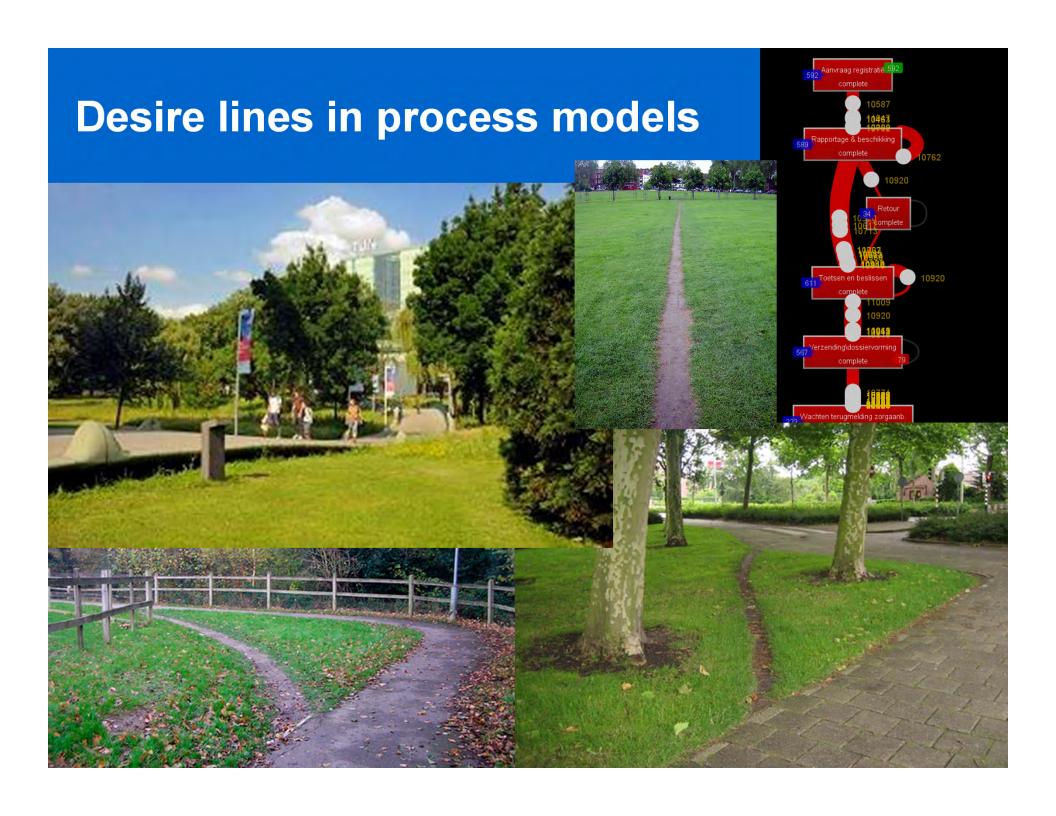
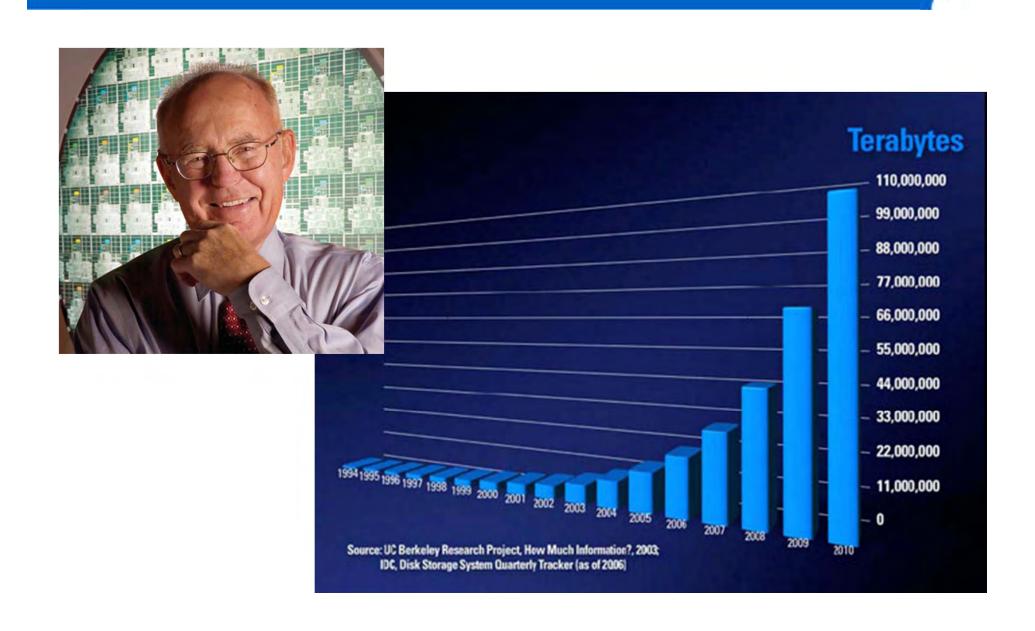
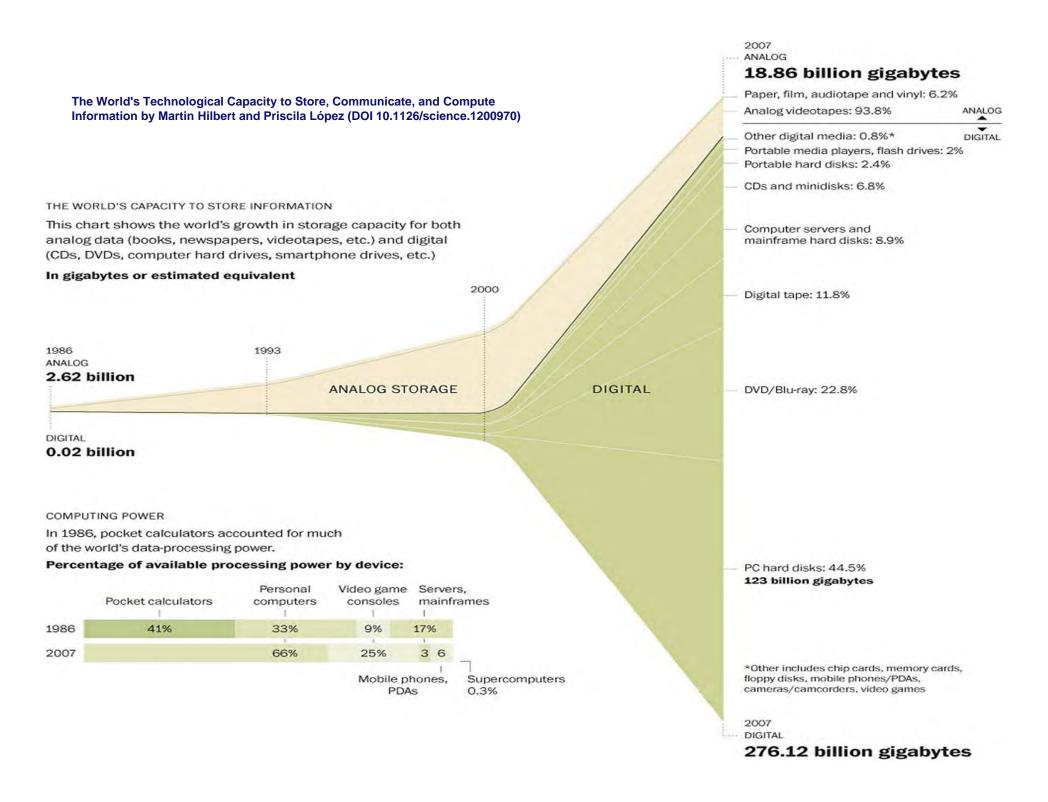

# Process Mining (Manifesto)


prof.dr.ir. Wil van der Aalst www.processmining.org







Technische Universiteit
Eindhoven
University of Technology

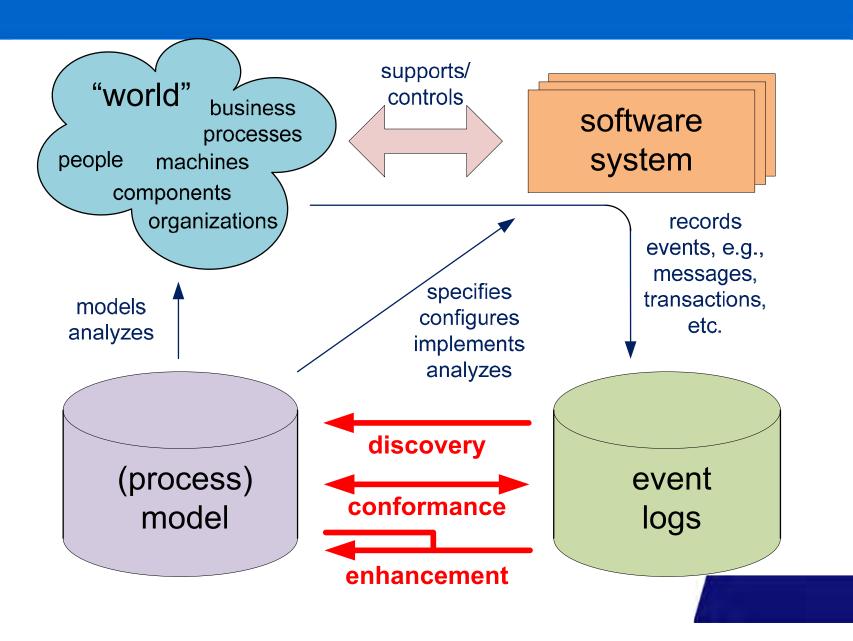
Where innovation starts



#### **Data explosion**








#### **Process Mining**



- Process discovery: "What is really happening?"
- Conformance checking: "Do we do what was agreed upon?"
- Performance analysis: "Where are the bottlenecks?"
- Process prediction: "Will this case be late?"
- Process improvement: "How to redesign this process?"
- Etc.

#### **Process Mining**



#### Starting point: event log

check ticket

decide

Sara

Mike

200

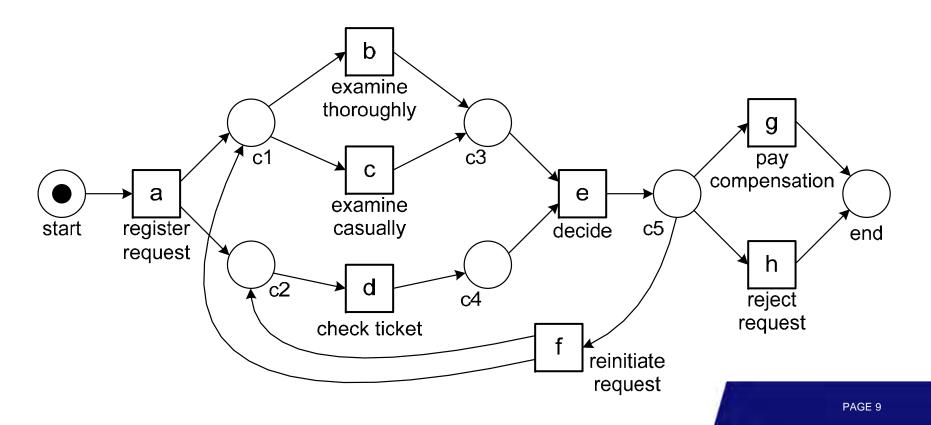
35654874 07-01-2011:16.22 35654875 07-01-2011:16.52

35654877 16-01-2011:11.47 pay compensation

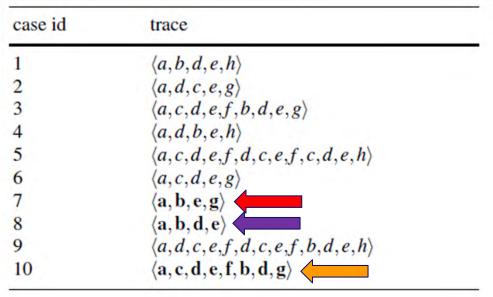
| ase id | event id |                                      | properties                        |              |            |                                         |                  |                    |          |             |         |
|--------|----------|--------------------------------------|-----------------------------------|--------------|------------|-----------------------------------------|------------------|--------------------|----------|-------------|---------|
|        |          | timestamp                            | activity                          | resource     | cost       | ***                                     |                  |                    |          |             |         |
| ļ, F   |          | 30-12-2010:11.02                     | register request                  | Pete         | 50         | · · ·                                   |                  |                    |          |             |         |
| 1      |          | 31-12-2010:10.06                     | examine thoroughly                | Sue          | 400        | ***                                     |                  |                    |          |             |         |
|        |          | 05-01-2011:15.12<br>06-01-2011:11.18 | check ticket<br>decide            | Mike<br>Sara | 100<br>200 |                                         |                  |                    |          |             |         |
|        |          | 07-01-2011:11.18                     | reject request                    | Pete         | 200        | ***                                     |                  |                    |          |             |         |
|        |          | 30-12-2010:11.32                     | register request                  | Mike         | 50         |                                         |                  |                    |          |             |         |
| 2      |          | 30-12-2010:12.12<br>30-12-2010:14.16 | check ticket<br>examine casually  | Miko         | 100        |                                         |                  |                    |          |             |         |
|        |          | 05-01-2011:11.22                     | decide                            | C            | ase id     | event id                                |                  | properties         |          |             |         |
|        | 35654489 | 08-01-2011:12.05                     | pay compensation                  | C            | ise ru     | event id                                |                  | properties         |          |             |         |
| 3      | 35654522 | 30-12-2010:14.32<br>30-12-2010:15.06 | register request examine casually |              |            |                                         | timestamp        | activity           | resource | cost        | • • • • |
|        |          | 30-12-2010:16.34<br>06-01-2011:09.18 | check ticket<br>decide            | \            |            | 35654423                                | 30-12-2010:11.02 | register request   | Pete     | 50          |         |
|        | 35654526 | 06-01-2011:12.18                     | reinitiate request                |              | 4          |                                         |                  |                    |          | 1 10 11     |         |
|        |          | 06-01-2011:13.06                     | examine thoroughly                |              | 1          | 35654424                                | 31-12-2010:10.06 | examine thoroughly | Sue      | 400         |         |
|        |          | 08-01-2011:11.43<br>09-01-2011:09.55 | check ticket<br>decide            |              |            | 35654425                                | 05-01-2011:15.12 | check ticket       | Mike     | 100         |         |
|        |          | 15-01-2011:1045                      | pay compensation                  |              |            | 35654426                                | 06-01-2011:11.18 | decide             | Sara     | 200         |         |
|        | 25654641 | 06-01-2011:15.02                     | maistar raquast                   | _            |            |                                         |                  |                    |          |             |         |
| 4      |          | 07-01-2011:12.06                     | register request<br>check ticket  |              |            | 35654427                                | 07-01-2011:14.24 | reject request     | Pete     | 200         |         |
|        |          | 08-01-2011:14.43                     | examine thoroughly                | 0            |            |                                         | 45               | m 2                | 0.24     |             |         |
|        |          | 09-01-2011:12.02                     | decide                            |              |            | 35654483                                | 30-12-2010:11.32 | register request   | Mike     | 50          |         |
|        | 35654647 | 12-01-2011:15.44                     | reject request                    |              | 2          | 35654485                                | 30-12-2010:12.12 | check ticket       | Mike     | 100         |         |
| _      |          | 06-01-2011:09.02                     | register request                  |              | _          | 35654487                                | 30-12-2010:14.16 | examine casually   | Pete     | 400         |         |
| 5      |          | 07-01-2011:10.16<br>08-01-2011:11.22 | examine casually<br>check ticket  |              |            | 35654488                                | 05-01-2011:11.22 | decide             | Sara     | 200         |         |
|        |          | 10-01-2011:13.28                     | decide                            |              |            |                                         |                  |                    |          |             | ***     |
|        |          | 11-01-2011:16.18                     | reinitiate request                |              |            | 35654489                                | 08-01-2011:12.05 | pay compensation   | Ellen    | 200         |         |
|        |          | 14-01-2011:14.33                     | check ticket                      | _            |            | 100000000000000000000000000000000000000 |                  |                    |          |             |         |
|        |          | 16-01-2011:15.50<br>19-01-2011:11.18 | examine casually<br>decide        | Sara         | 200        |                                         |                  | •                  | -        |             |         |
|        |          |                                      | reinitiate request                | Sara         | 200        |                                         |                  |                    |          |             |         |
|        |          | 21-01-2011:09.06                     | examine casually                  | Sue          | 400        | ***                                     |                  |                    |          |             |         |
|        |          | 21-01-2011:11.34                     | check ticket                      | Pete         | 100        |                                         |                  |                    |          |             |         |
|        |          | 23-01-2011:13.12                     | decide                            | Sara         | 200        | ***                                     |                  |                    |          |             |         |
|        | 35654726 | 24-01-2011:14.56                     | reject request                    | Mike         | 200        |                                         |                  |                    |          |             |         |
|        |          | 06-01-2011:15.02                     | register request                  | Mike         | 50         | ***                                     | VE               | E MAYNAL CA        | RAVRAI   | CCV         | 040     |
| 6      | 35654873 | 06-01-2011:16.06                     | examine casually                  | Ellen        | 400        |                                         | <b>∧</b> □       | ES, MXML, SA       |          | <b>U3V.</b> | . ell   |

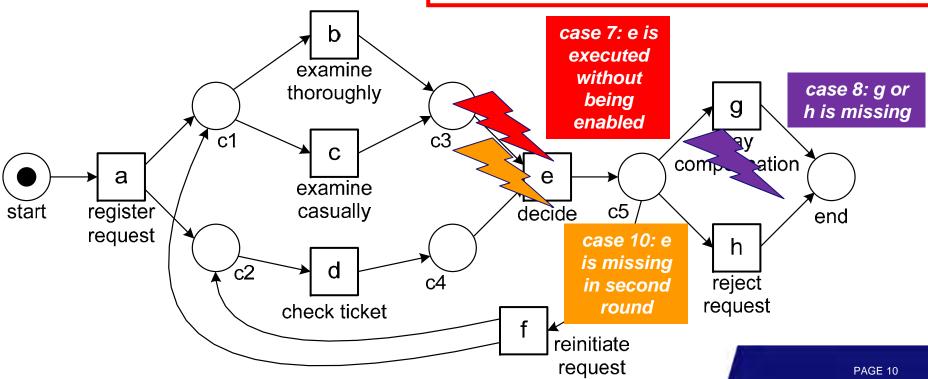
PAGE 7

#### Simplified event log

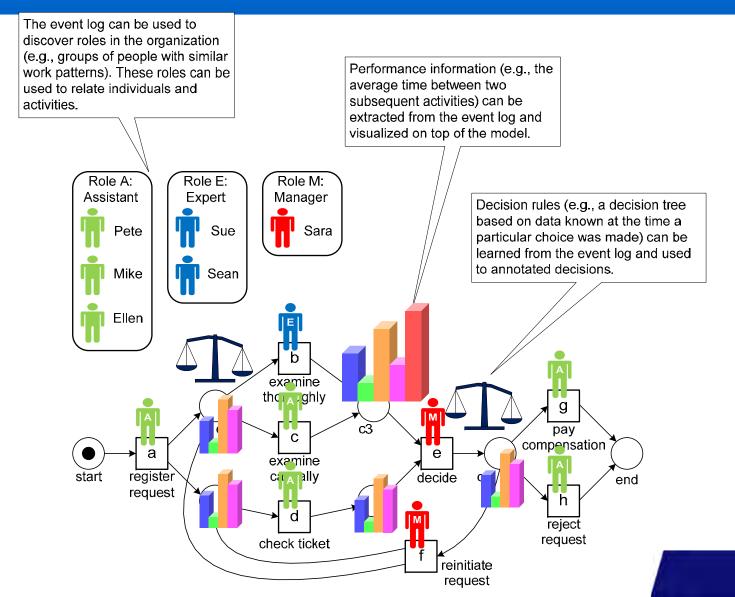

| ease id event id |          |                  |                    |          |        |
|------------------|----------|------------------|--------------------|----------|--------|
|                  |          | timestamp        | activity           | resource | case   |
| hr.              | 35654423 | 30-12-2010:11.02 | register request   | Pete     | _ cas. |
| 1                | 35654424 | 31-12-2010:10.06 | examine thoroughly | Sue      |        |
|                  | 35654425 | 05-01-2011:15.12 | check ticket       | Mike     | - 4    |
|                  | 35654426 | 06-01-2011:11.18 | decide             | Sara     | 1      |
|                  | 35654427 | 07-01-2011:14.24 | reject request     | Pete     |        |
|                  | 35654483 | 30-12-2010:11.32 | register request   | Mike     | 2      |
| 2                | 35654485 | 30-12-2010:12.12 | check ticket       | Mike     | 10     |
|                  | 35654487 | 30-12-2010:14.16 | examine casually   | Pete     | 3      |
|                  | 35654488 | 05-01-2011:11.22 | decide             | Sara     | J      |
|                  | 35654489 | 08-01-2011:12.05 | pay compensation   | Ellen    | 4      |
| 77.1             | 35654521 | 30-12-2010:14.32 | register request   | Pete     | 7      |
| 3                | 35654522 | 30-12-2010:15.06 | examine casually   | Mike     | 5      |
|                  | 35654524 | 30-12-2010:16.34 | check ticket       | Ellen    | 3      |
|                  | 35654525 | 06-01-2011:09.18 | decide             | Sara     | 1      |
|                  | 35654526 | 06-01-2011:12.18 | reinitiate request | Sara     | 6      |
|                  | 35654527 | 06-01-2011:13.06 | examine thoroughly | Sean     | U      |
|                  | 35654530 | 08-01-2011:11.43 | check ticket       | Pete     |        |
|                  | 35654531 | 09-01-2011:09.55 | decide             | Sara     |        |
|                  | 35654533 | 15-01-2011:10.45 | pay compensation   | Ellen    |        |
|                  | 35654641 | 06-01-2011:15.02 | register request   | Pete     | 50     |
| 4                | 35654643 | 07-01-2011:12.06 | check ticket       | Mike     | 100    |
|                  | 35654644 | 08-01-2011:14.43 | examine thoroughly | Sean     | 400    |
|                  | 35654645 | 09-01-2011:12.02 | decide             | Sara     | 200    |
|                  | 35654647 | 12-01-2011:15.44 | reject request     | Ellen    | 200    |
|                  | 35654711 | 06-01-2011:09.02 | register request   | Ellen    | 50     |
| 5                | 35654712 | 07-01-2011:10.16 | examine casually   | Mike     | 400    |
|                  | 35654714 | 08-01-2011:11.22 | check ticket       | Pete     | 100    |
|                  | 35654715 | 10-01-2011:13.28 | decide             | Sara     | 200    |
|                  | 35654716 | 11-01-2011:16.18 | reinitiate request | Sara     | 200    |
|                  | 35654718 | 14-01-2011:14.33 | check ticket       | Ellen    | 100    |
|                  | 35654719 | 16-01-2011:15.50 | examine casually   | Mike     | 400    |
|                  | 35654720 | 19-01-2011:11.18 | decide             | Sara     | 200    |
|                  | 35654721 | 20-01-2011:12.48 | reinitiate request | Sara     | 200    |
|                  | 35654722 | 21-01-2011:09.06 | examine casually   | Sue      | 400    |
|                  | 35654724 | 21-01-2011:11.34 | check ticket       | Pete     | 100    |
|                  | 35654725 | 23-01-2011:13.12 | decide             | Sara     | 200    |
|                  | 35654726 | 24-01-2011:14.56 | reject request     | Mike     | 200    |
|                  | 35654871 | 06-01-2011:15.02 | register request   | Mike     | 50     |
| 6                | 35654873 | 06-01-2011:16.06 | examine casually   | Ellen    | 400    |
| U                | 35654874 | 07-01-2011:16.22 | check ticket       | Mike     | 100    |
|                  | 35654875 | 07-01-2011:16.52 | decide             | Sara     | 200    |
|                  | 35654877 | 16-01-2011:11.47 | pay compensation   | Mike     | 200    |
|                  | 22024011 | 10-01-2011,11.47 | pay compensation   | WIIKC    | 200    |

| case id | trace                                                   |
|---------|---------------------------------------------------------|
| 1       | $\langle a,b,d,e,h \rangle$                             |
| 2       | $\langle a,d,c,e,g \rangle$                             |
| 3       | $\langle a, c, d, e, f, b, d, e, g \rangle$             |
| 4       | $\langle a,d,b,e,h \rangle$                             |
| 5       | $\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$ |
| 6       | $\langle a, c, d, e, g \rangle$                         |
| 4       |                                                         |


a = register request,
b = examine thoroughly,
c = examine casually,
d = check ticket,
e = decide,
f = reinitiate request,
g = pay compensation,
and h = reject request


### Process discovery

| case id | trace                                                   |     |
|---------|---------------------------------------------------------|-----|
| 1       | $\langle a,b,d,e,h \rangle$                             | === |
| 2       | $\langle a,d,c,e,g \rangle$                             | —   |
| 3       | $\langle a, c, d, e, f, b, d, e, g \rangle$             |     |
| 4       | $\langle a,d,b,e,h \rangle$                             |     |
| 5       | $\langle a, c, d, e, f, d, c, e, f, c, d, e, h \rangle$ |     |
| 6       | $\langle a,c,d,e,g \rangle$                             |     |
|         | •••                                                     |     |




### **Conformance checking**





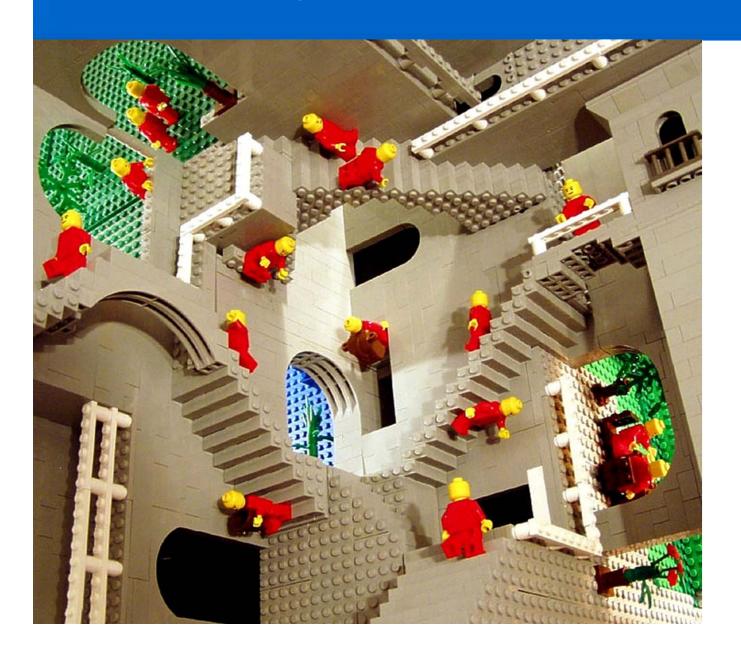
### Extension: Adding perspectives to model based on event log



PAGE 11

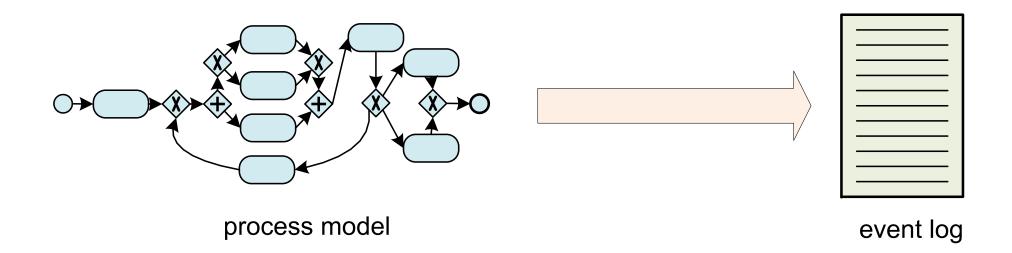
#### We applied ProM in >100 organizations

- Municipalities (e.g., Alkmaar, Heusden, Harderwijk, etc.)
- Government agencies (e.g., Rijkswaterstaat, Centraal Justitieel Incasso Bureau, Justice department)
- Insurance related agencies (e.g., UWV)
- Banks (e.g., ING Bank)
- Hospitals (e.g., AMC hospital, Catharina hospital)
- Multinationals (e.g., DSM, Deloitte)
- High-tech system manufacturers and their customers (e.g., Philips Healthcare, ASML, Ricoh, Thales)
- Media companies (e.g. Winkwaves)

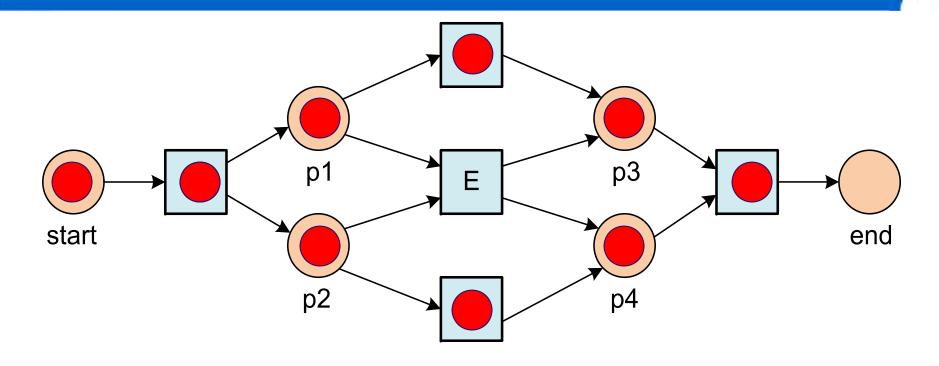

•

#### All supported by ...



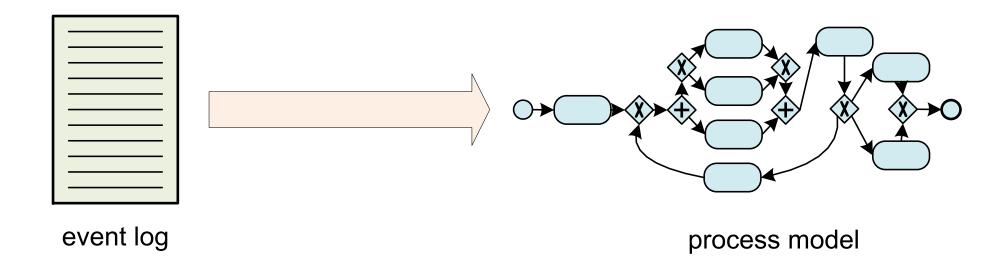

- Open-source (L-GPL), cf. www.processmining.org
- Plug-in architecture
- Plug-ins cover the whole process mining spectrum and also support classical forms of process analysis

#### Let us play ...




Play-Out
Play-In
Replay

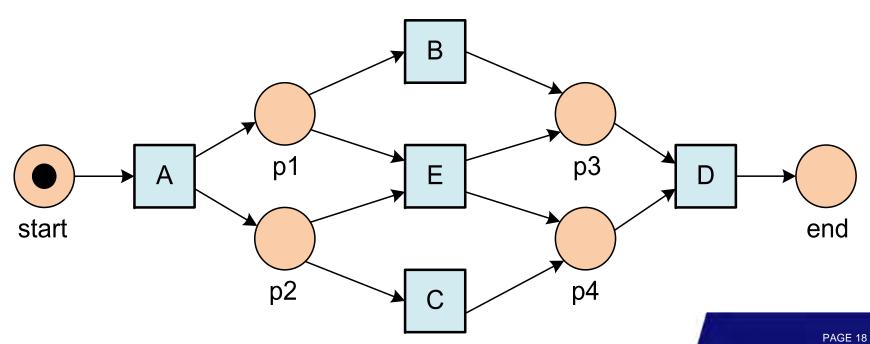
#### **Play-Out**



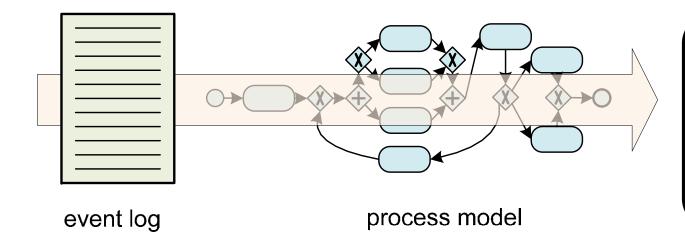

#### Play-Out (Classical use of models)



A B C D A E D AED ACBD ACBD ACBD PAGE 16


#### Play-In

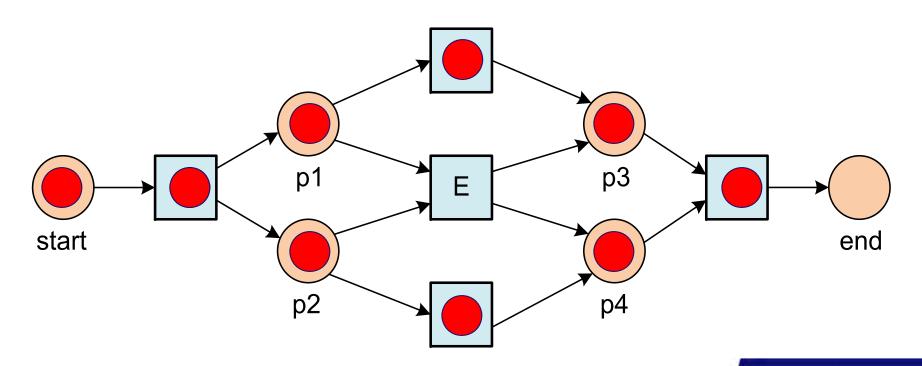



#### Play-In

ABCD AED AED

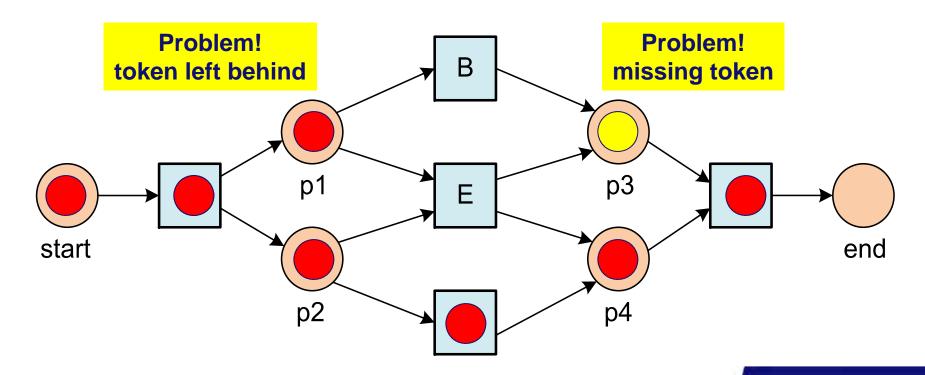
ACBD ACBD



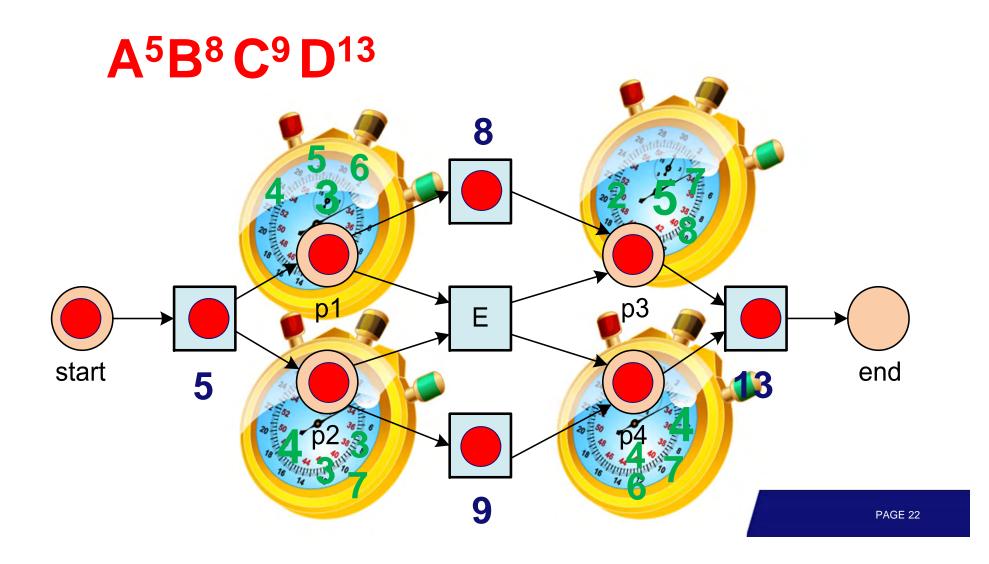

#### Replay



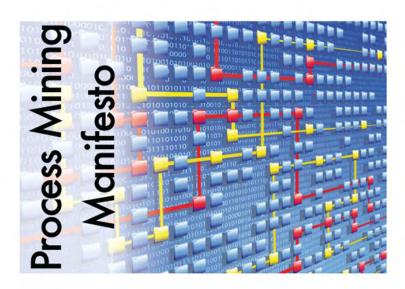
- extended model showing times, frequencies, etc.
- diagnostics
- predictions
- recommendations


#### Replay

#### A B C D




#### Replay can detect problems


#### **ACD**



#### Replay can extract timing information



#### **Process Mining Manifesto**



A manifesto is a "public declaration of principles and intentions" by a group of people. This manifesto is written by members and supporters of the IEEE Task Force on Process Mining. The goal of this task force is to promote the research, development, education, implementation, evolution, and understanding of process mining.

Process mining is a relatively young research discipline that sits between computational intelligence and data mining on the one hand, and process modeling and analysis on the other hand. The idea of process mining is to discover, monitor and improve real processes (i.e., not assumed processes by extracting knowledge from event logs readily available in today's (information) systems. Process mining includes (automated) process discovery (i.e., extracting process models from an event log), conformance checking (i.e., monitoring deviations by comparing model and log), social network/ organizational mining, automated

model extension, model repair, case prediction, and history-based recommendations

| Contents:                         |    |
|-----------------------------------|----|
| Process Mining - State of the Art | 3  |
| Guiding Principles                | 6  |
| Challenges                        | 10 |
| Epilogue                          | 13 |
| Glossary                          | 14 |

Process mining lechniques are able to extract knowledge from event logs commonly available in today's information systems. These lechniques provide new means to discover, manifor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifests is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifests hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes.

- On 7 October 2011, the IEEE Task Force on Process Mining released the Process Mining Manifesto
- 53 organizations support the manifesto
- 77 process mining experts contributed to it

#### **Guiding Principles**

GP1: Event data should be treated as first-class citizens.

Events should be trustworthy; that is, it should be safe to assume that the recorded events actually happened and that the attributes of events are correct. Event logs should be complete; given a particular scope, no events may be missing. Any recorded event should have well-defined semantics. Moreover,

GP2: Log extrac should be driver questions.

GP3: Process-m techniques shou support concurre should be choice, and othe control-flow cor

GP4: Events sho related to model elements.

**GP4**: **Events** related to model elements.

**Conformance checking and enhancement rely** heavily on the relationship between elements in the model and events in the log. This relationship can be used by process mining tools to "replay" the event log on the model. Replay can reveal discrepancies between event log and model (for example, some events in the log aren't possible according to the model). It can also enrich the model with additional information from the event log (for example, it can identify bottlenecks by using timestamps).

for example, SAP. Without

Cs, Petri nets, oice (XORrns.

nts in the play" the event mple, some th additional mps).

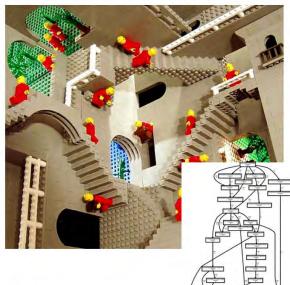
GP5: Models should be treated as purposeful abstractions of reality.

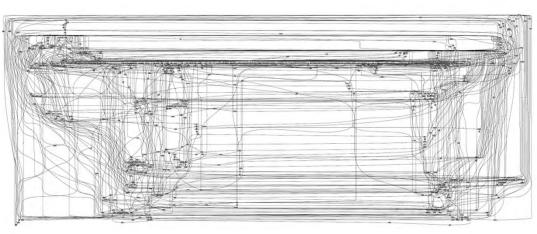
A model derived from event data provides a view on reality. Such a view should serve as a purposeful abstraction of the behavior captured in the event log. Given an event log, multiple useful views might exist.

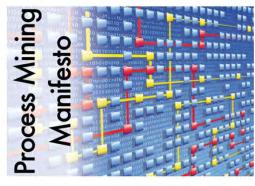
**GP6: Process mining** should be a continuous process.

Given the dynamic nature of processes, we shouldn't view process mining as a one-time activity. The goal should be not to create a fixed model, but to breathe life into process models in a way that encourages users and analysts to look at them on a daily basis.

### Challenges (1/2)


| C1: Finding, merging, and cleaning event data                                                     | When extracting event data suitable for process mining, we must address several challenges: data can be distributed over a variety of sources, event data might be incomplete, an event log could contain outliers, logs could contain events at different |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C4: Dealing with concept drift                                                                    | The process might be changing while under analysis. Understanding such concept drifts is of prime importance for process management.                                                                                                                       |
| drift                                                                                             | of prime importance for process management.                                                                                                                                                                                                                |
| C5: Improving the representational bias used for process discovery                                | A careful and refined selection of the representational bias is necessary to ensure high-quality process-mining results.                                                                                                                                   |
| C6: Balancing between quality criteria such as fitness, simplicity, precision, and generalization | Four competing quality dimensions exist: fitness, simplicity, precision, and generalization. The challenge is to find models that can balance all four dimensions.                                                                                         |


#### Challenges (2/2)


In some use cases, event logs from multiple organizations are available for analysis. Some C7: Crossorganizations, such as supply chain partners, work together to handle process instances; organizational other organizations execute essentially the same process while sharing experiences, knowledge, or a common infrastructure. However, traditional process-mining techniques mining typically consider one event log in one organization. In some use cases, event logs from multiple C8: P organizations are available for analysis. Some opera organizations, such as supply chain partners, work C9: C C7: Crosstogether to handle process instances; other proce organizations execute essentially the same process while organization al mining sharing experiences, knowledge, or a common infrastructure. However, traditional process-mining C10: usabi techniques typically consider one event log in one exper organization. C11: Improving conclusions. To avoid such problems, process mining tools should present results using a understandability suitable representation and the trustworthiness of the results should always be clearly for non-experts indicated.

#### Conclusion









A manifesto is a "public declaration of principles and intentions." by a group of people. This manifesto is written by members and supporters of the IEEE Task Force on Process Mining. The goal of this task force is to promote the research, development, education, implementation, evolution, and understanding of process mining.

Frozen mining is relatively years research dissiplies that is helves computational intelligence and data mining on the one hone, and process modeling and analysis on the other hand. The idea of process mining is not discover, massive and improve real standard in the control of the control per activating benefits of the control per activating benefits Process mining includes (submarted) process discovery (i.e., exbording process models from a world logs, conformance debeting [i.e., and the control of registrational mining, automated

model extension, model repair, case prediction, and history-based

| Contents:                         |    |
|-----------------------------------|----|
| Process Mining - State of the Art | 3  |
| Guiding Principles                | 6  |
| Challenges                        | 10 |
| Epilogue                          | 13 |
| Glossery                          | 14 |

Process sining lectriques are oble to extend boundage from event lags commonly available in budy's information system. These hachniques provide even excess to discover, monitor, and improve processes in a variety of application of the common of the commo

Are multi-agent systems a natural representation of real life systems and processes?

If so, there should be good mining/discovery algorithms for them!

Discovery, Conformance and Enhancement of Business Processes

More and more information about business processes is recorded by information systems in the form of so-called "event logs". Despite the omnipresence of such data, most organizations diagnose problems based on fiction rather than facts. Process mining is an emerging discipline based on process model-driven approaches and data mining. It not only allows organizations to fully benefit from the information stored in their systems, but it can also be used to check the conformance of processes, detect bottlenecks, and predict execution problems.

Wil van der Aalst delivers the first book on process mining. It aims to be self-contained while covering the entire process mining spectrum from process discovery to operational support. In Part I, the author provides the basics of business process modeling and data mining necessary to understand the remainder of the book. Part II focuses on process discovery as the most important process mining task. Part III moves beyond discovering the control flow of processes and highlights conformance checking, and organizational and time perspectives. Part IV guides the reader in successfully applying process mining in practice, including an introduction to the widely used open-source tool ProM. Finally, Part V takes a step back, reflecting on the material presented and the key open challenges.

Overall, this book provides a comprehensive overview of the state of the art in process mining. It is intended for business process analysts, business consultants, process managers, graduate students, and BPM researchers.

#### Features and Benefits:

- First book on process mining, bridging the gap between business process modeling and business intelligence.
- Written by one of the most influential and most-cited computer scientists and the best-known BPM researcher.
- Self-contained and comprehensive overview for a broad audience in academia and industry.
- The reader can put process mining into practice immediately due to the applicability of the techniques and the availability of the open-source process mining software ProM.

van der Aalst

Wil M. P. van der Aalst



Process Mining

## Process Mining

Discovery, Conformance and Enhancement of Business Processes

www.processmining.org

Computer Science



> springer.com

www.win.tue.nl/ieeetfpm/

